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10. GMM

GaussianMixture : un modele de mélange gaussien est un modele probabiliste qui suppose que tous les points de
données sont géneéreés a partir d'un meélange d'un nombre fini de distributions gaussiennes avec des parametres
inconnus.

On peut considérer que les modeles de melange généralisent le regroupement par k-means pour intégrer des
informations sur la structure de covariance des données ainsi que sur les centres des gaussiennes latentes.

L'objet GaussianMixture met en ceuvre l'algorithme d'espérance-maximisation (EM) pour l'ajustement des modeles
de mélange de gaussiens. Il peut egalement dessiner des ellipsoides de confiance pour les modeles multivariés et
calculer le critere d'information bayésien pour évaluer le nombre de groupes dans les données.

Une méthode GaussianMixture.fit est fournie pour apprendre un modele de mélange gaussien a partir des données
d'entrainement. Etant donné les données de test, il peut attribuer & chaque échantillon le modéle de mélange
gaussien auquel il appartient le plus probablement en utilisant la méthode GaussianMixture.predict.

Le GaussianMixture est fourni avec differentes options pour contraindre la covariance des classes de différence
estimeées : sphérique, diagonale, liee ou covariance complete.

Source



https://scikit-learn.org/stable/modules/mixture.html#:~:text=A%20Gaussian%20mixture%20model%20is,Gaussian%20distributions%20with%20unknown%20parameters.

Un modele de mélange gaussien (usuellement abrégé par I'acronyme anglais GMM pour Gaussian
Mixture Model) est un modele statistique exprimé selon une densité melange. Il sert usuellement a

estimer paramétriquement la distribution de variables aléatoires en les modélisant comme une somme
de plusieurs gaussiennes (appelées noyaux). Il s'agit alors de déterminer la variance, la moyenne et
I'amplitude de chaque gaussienne. Ces parametres sont optimisés selon un critere de maximum de
vraisemblance pour approcher le plus possible la distribution recherchée. Cette procedure se fait le plus
souvent itérativement via l'algorithme espérance-maximisation (EM).

Les modeles de mélange gaussien sont réputés pour reconstruire de maniere particulierement efficace

les données manquantes dans un jeu de données expérimentales.
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Deux gaussiennes forment une distribution bimodale


https://fr.wikipedia.org/wiki/Mod%C3%A8le_statistique
https://fr.wikipedia.org/wiki/Densit%C3%A9_m%C3%A9lange
https://fr.wikipedia.org/wiki/Loi_de_probabilit%C3%A9
https://fr.wikipedia.org/wiki/Variable_al%C3%A9atoire
https://fr.wikipedia.org/wiki/Loi_normale
https://fr.wikipedia.org/wiki/Variance_(statistiques_et_probabilit%C3%A9s)
https://fr.wikipedia.org/wiki/Moyenne
https://fr.wikipedia.org/wiki/Amplitude
https://fr.wikipedia.org/wiki/Maximum_de_vraisemblance
https://fr.wikipedia.org/wiki/Algorithme_esp%C3%A9rance-maximisation

10. GMM

Dans sa forme la plus simple, le GMM est également un type d'algorithme de regroupement.

Comme son nom l'indique, chaque cluster est modeélisé selon une distribution gaussienne différente.

Cette approche flexible et probabiliste de la modélisation des données signifie qu'au lieu d'avoir des affectations
dures dans les clusters comme les k-means, nous avons des affectations souples.

Cela signifie que chaque point de données pourrait avoir été genéré par n'importe laquelle des distributions avec
une probabilité correspondante.

En fait, chaque distribution a une certaine "responsabilité” dans la génération d'un point de données particulier.

Comment pouvons-nous estimer ce type de modele ?

Eh bien, une chose que nous pouvons faire est d'introduire une variable latente y (gamma) pour chaque point de
données.

Cela suppose que chague point de données a été génére en utilisant certaines informations sur la variable latente y.
En d'autres termes, cela nous indique quelle gaussienne a génére un point de données patrticulier.

En pratique, cependant, nous n'‘observons pas ces variables latentes et nous devons donc les estimer.

Comment s'y prendre ?

Heureusement pour nous, il existe déja un algorithme a utiliser dans ce genre de cas, 'algorithme de maximisation
de lI'espérance (EM), que nous allons aborder.



10. GMM

L'algorithme EM se compose de deux étapes, une étape E ou étape d'esperance et une étape M ou étape de
maximisation. Disons que nous avons des variables latentes y (qui he sont pas observées et sont désignees parle
vecteur Z ci-dessous) et nos points de données X. Notre objectif est de maximiser la vraisemblance marginale de X
étant donné nos parametres (désignés par le vecteur 0). Essentiellement, nous pouvons trouver la distribution
marginale comme étant le joint de X et Z et faire la somme de tous les Z (regle de la somme des probabilites).

L . . . Inp(X|0) = In{ $.p(X, Z|©
Equation 1 : Vraisemblance marginale avec variables latentes np(X|0) = inq T-p(X, Z|0)

L'équation ci-dessus donne souvent lieu a une fonction compliquée qu'il est-difficile-de-maximiser. Ce que nous
pouvons faire dans ce cas est d'utiliser I'inégalité de Jensen pour construire une fonction de limite inférieure qui est
beaucoup plus facile a optimiser. Si nous optimisons cette fonction en minimisant la divergence KL (écart) entre les
deux distributions, nous pouvons nous rapprocher de la fonction originale. Ce processus est illustré dans la figure 1
ci-dessous. J'ai également fourni un lien vidéo ci-dessus qui montre une dérivation de la divergence KL pour ceux
d'entre vous qui souhaitent une explication mathématique plus rigoureuse.
Pour estimer notre modele, il suffit essentiellement d'effectuer deux étapes. Dans la premiére étape (étape E),
nous voulons estimer la distribution postérieure de nos variables latentes y conditionnellement a nos poids (1T), nos
moyennes () et notre covariance (2) de nos gaussiennes. Le vecteur des parametres est désigné par 6 dans la
figure 1. L'estimation de I'étape E nécessite d'abord d'initialiser ces valeurs et nous pouvons le faire avec les k-
means qui sont généralement un bon point de départ (plus d'informations a ce sujet dans le code ci-dessous).
Nous pouvons ensuite passer a la deuxieme étape (étape M) et utiliser y pour maximiser la vraisemblance par
rapport a nos parametres 0. Ce processus est répété jusqu'a ce que l'algorithme converge (la fonction de perte ne
change pas).
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Hyperparametres :

*n_composants : par défaut=1, le nombre de composants du mélange.
scovariance_type : {full', 'tied’, 'diag’, 'spherical’}, default="full'. Chaine décrivant le type de parametres de
covariance a utiliser. Doit étre I'un de :

« full : (complet) chaque composant a sa propre matrice de covariance géneérale.

 tied : tous les composants partagent la méme matrice de covariance générale.

« diag : chaque composant a sa propre matrice de covariance diagonale.

» spherical : chaque composante a sa propre variance unique.




Gaussian Mixture Model - Principe:

Méthode assez similaire au k-means, a la différence qu’ici on va
considérer que les clusters sont distribués en suivant une loi normale
(gaussiennes

=> 0On ne va donc plus construire nos clusters via la distance
euclidienne des points au centroide mais en se basant sur le principe
de maximum de vraisemblance

Grace a cette méthode, on ne se limite donc plus a
des clusters sphériques |










