
K-Means

4 K-Means



4. K-Means

La méthode de clustering k-means est une technique d'apprentissage automatique non supervisée utilisée 

pour identifier les patterns d’individus que l’on va regrouper selon des similarités donc il est parfait pour 

segmenter les clients.

Cet algorithme a été conçu en 1957 au sein des Laboratoires Bell par Stuart P.Lloyd comme technique 

de modulation par impulsion et codage(MIC) . Il n’a été présenté au grand publique qu’en 1982. En 1965 

Edward W.Forgy avait déjà publié un algorithme quasiment similaire c’est pourquoi le K-means est 

souvent nommé algorithme de Lloyd-Forgy.

Ces techniques nécessitent que l'utilisateur spécifie le nombre de clusters, indiqué par la variable k.

Cet algorithme est non déterministe, ce qui signifie qu'il peut produire des résultats différents à partir de deux 

exécutions distinctes, même si les exécutions sont basées sur la même entrée.

La qualité des affectations de clusters est déterminée en calculant la somme de l'erreur quadratique (SSE) après 

que les centroïdes convergent, ou correspondent à l'affectation de l'itération précédente. La SSE est définie comme 

la somme des carrés des distances euclidiennes de chaque point à son centroïde le plus proche. Comme il s'agit 

d'une mesure de l'erreur, l'objectif des k-means est d'essayer de minimiser cette valeur.



4. K-Means

L'algorithme :

Initialiser le paramètre k nombre de cluster :

- Méthode du coude 

- ou coefficient de silhouette

La qualité des affectations de clusters est déterminée 

en calculant la somme de l'erreur quadratique (SSE) 

après que les centroïdes convergent, ou correspondent 

à l'affectation de l'itération précédente. La SSE est 

définie comme la somme des carrés des distances 

euclidiennes de chaque point à son centroïde le plus 

proche. Comme il s'agit d'une mesure de l'erreur, 

l'objectif des k-means est d'essayer de minimiser cette 

valeur.



4. K-Means

Hyperparamètres :

• n_clusters : Nous devons fournir à l'algorithme le nombre de clusters que nous souhaitons. La littérature 

standard suggère que nous utilisions la méthode du coude pour déterminer le nombre de clusters dont nous avons 

besoin et cela fonctionne bien pour les jeux de données théoriques nettoyés.

• init : C'est ici que vous pouvez définir les centroïdes initiaux des clusters.

• random_state : Il s'agit de définir une graine aléatoire. C'est utile si nous voulons reproduire des clusters exacts 

encore et encore.

• n_init : la valeur par défaut est 10. L'algorithme initialisera donc les centroïdes 10 fois et choisira la valeur la plus 

convergente comme meilleur ajustement. Augmentez cette valeur pour balayer tout l'espace des caractéristiques. 

Notez que si nous fournissons les centroïdes, l'algorithme ne s'exécutera qu'une seule fois ; en fait, il nous en 

avertira au moment de l'exécution. Si nous définissons les centroïdes initiaux ou si nous définissons un nombre de 

clusters supérieur à ce que nous attendons (dans l'intention de consolider certains clusters ultérieurement, comme 

indiqué ci-dessus), nous pouvons laisser cette valeur par défaut. Avec suffisamment de temps, K-means

convergera toujours, mais peut-être vers un minimum local. Cela dépend fortement de l'initialisation des 

centroïdes. Par conséquent, le calcul est souvent effectué plusieurs fois, avec différentes initialisations des 

centroïdes. Une méthode permettant de résoudre ce problème est le schéma d'initialisation k-means++, qui a été 

implémenté dans scikit-learn (utilisez le paramètre init='k-means++'). Cela initialise les centroïdes pour qu'ils soient 

(généralement) distants les uns des autres, ce qui conduit à des résultats probablement meilleurs que l'initialisation 

aléatoire, comme indiqué dans la référence.



4. K-Means

• tol : Si nous fixons cette valeur à un niveau plus élevé, cela signifie que nous sommes prêts à tolérer une plus 

grande variation d'inertie, ou de perte, avant de déclarer la convergence (un peu comme la vitesse de convergence). 

Ainsi, si le changement d'inertie est inférieur à la valeur spécifiée par tol, alors l'algorithme arrêtera d'itérer et 

déclarera la convergence même s'il a effectué moins de max_iter rounds. Gardez cette valeur basse pour balayer 

tout l'espace des caractéristiques.

• max_iter = Il y a n_init runs en général et chaque run itère max_iter fois, c'est-à-dire que dans un run, les points 

seront assignés à différents clusters et la perte calculée pour max_iter fois. Si vous maintenez max_iter à une valeur 

plus élevée, vous avez la garantie d'avoir exploré tout l'espace des caractéristiques, mais cela se fait souvent au prix 

de rendements décroissants.



4. K-Means

Inconvénients :

- Initialiser le paramètre k (nombre de clusters).

- algorithme non déterministe, ce qui signifie qu'ils peuvent produire des résultats différents à partir de deux 

exécutions distinctes, même si les exécutions sont basées sur la même entrée.

- Le résultat dépend fortement de l'endroit où les centroïdes sont placés au départ.

- Un minima local et pas le minimum gobal peut être atteint donc pas le meilleur partitionnement.

- Plus il y a de centroïdes, plus il y aura de minima locaux.

- Sensible à la métrique de distance choisie (euclidienne, manhattan…)

- Mais lenteur quand même parce que nécessité de faire passer plusieurs fois les observations. 

- La solution peut dépendre de l’ordre des individus (MacQueen) ➔ Mélanger aléatoirement les individus avant de 
les faire passer pour ne pas être dépendant d’une organisation non maîtrisée des observations.

Avantages :

- Simple à mettre en œuvre.

- Entraînement rapide.

- Scalabilité : Capacité à traiter les très grandes bases. Seuls les vecteurs des moyennes sont à conserver en 

mémoire centrale. Complexité linéaire par rapport au nombre d’observations (pas de calcul des distances deux 

à deux des individus, cf. CAH).



4. K-Means



4. K-Means



4. K-Means



4. K-Means


