7 DBSCAN

/. DBSCAN
-

DBSCAN est un apprentissage non supervisé non parameétrique basé sur la densité proposé en 1996 par Martin Ester,
Hans-Peter Kriegel, Jorg Sander et Xiaowei Xu.

Moins d'hypotheses, plus de flexibilité dans le modele construit, une application plus large.
Semblable a K-Means, DBSCAN regroupe les données en fonction de leurs similarités sur la base de fonctions de

distance et de densité.
La densité signifie ici le nombre de points dans la région définie par les parameéetres du modele.

L'algorithme DBSCAN utilise 2 parametres : la distance et le nombre minimum de points MinPts devant se trouver
dans un rayon epsilon, pour que ces points soient considérés comme un cluster.

Les parametres d'entrées sont donc une estimation de la densité de points des clusters.

L'idée de base de l'algorithme est ensuite, pour un point donné, de récupérer son epsilon-voisinage et de vérifier qu'il
contient bien MinPts points ou plus. Ce point est alors considéré comme faisant partie d'un cluster.

On parcourt ensuite I'epsilon -voisinage de proche en proche afin de trouver I'ensemble des points du cluster.

L'algorithme fonctionne en calculant la distance entre chaque point et tous les autres points. Nous plagons ensuite
les points dans l'une des trois catégories suivantes.

« Point central : un point avec au moins min_samples de points dont la distance par rapport au point est
inférieure au seuil défini par epsilon.

« Point frontiere : un point qui n'est pas a proximité d'au moins min_samples de points mais qui est
suffisamment proche d'un ou plusieurs points centraux. Les points limites sont inclus dans le cluster du
point central le plus proche.

» Point de bruit (aberrant) : points qui ne sont pas assez proches des points centraux pour étre considérés
comme des points limites. Les points de bruit sont ignores. C'est-a-dire qu'ils ne font partie d'aucun

cluster.
Core point

Noise point Border point

Le DBSCAN est un algorithme simple qui déefinit des clusters en utilisant

I'estimation de la densité locale. On peut le diviser en 4 &tapes :

« Pour chaque cobservation on regarde le nombre de points a au plus une
distance £ de celle-ci. On appelle cette zone |le g-voisinage de l'observation.

« Siune observation compte au moins un certain nombre de voisins y compris
elle-méme, elle est consideree comme une observation coeur. On a alors
decele une observation a haute densité.

+ Toutes les cbservations au voisinage d'une observation coeur appartiennent
au méme cluster. Il peut y avoir des cbservations coeur proche les unes des
autres. Par conséquent de proche en proche on obtient une longue séquence
d'observations coeur qui constitue un unique cluster.

+ Toute cbservation qui nest pas une observation coeur et gui ne comporte
pas dobservation coeur dans son voisinage est considérée comme une

anomalie.

Vous avez donc besoin de definir deux informations avant d'utiliser le DBSCAMN

Quelle distance & pour determiner pour chaque observation le
g-voisinage ? Quel est le nombre minimal de voisins
nécessaire pour considéerer qu'une observation est une

observation cceur ?

Ces deux informations sont renseignees librement par l'utilisateur.
Contrairement a l'algorithme des k-moyennes ou la classification ascendante
higrarchigue, il 'y a pas besoin de définir en amont le nombre de clusters ce qui

rend l'algorithme moins rigide.

Un autre avantage de DBSCAN est qu’'il permet aussi de gérer les valeurs
aberrantes ou anomalies. Vous remarquerez dans la figure ci-dessus que
lalgorithme a determine 3 clusters principaux : le bleu, le vert et le jaune. Les
points colares en violet constituent des anomalies detectées par le DBSCAN.

Evidemment suivant la valeur de £ et le nombre de voisins minimal le

partitionnement peut varier.

Hyperparametres :

 eps : définit le voisinage d'un point, x, ou le rayon d'un cercle (ou d'une hypersphere dans I'espace N-D) avec x
comme centre. Deux points sont considérés comme voisins si la distance entre les deux points est inférieure au

seuil epsilon.

* minPts : nombre minimum de points dans le voisinage pour former une région dense.

* min_samples : le nombre minimum de voisins qu'un point donné doit avoir pour étre classé comme un point

central. Il est important de noter que le point lui-méme est inclus dans le nombre minimum d'échantillons.
* metric : la métrique a utiliser lors du calcul de la distance entre les instances d'un tableau de caractéristiques

(c'est-a-dire la distance euclidienne).

Les points A sont les points déja dans le cluster. Les points B et C
sont atteignables depuis A et appartiennant donc au méme cluster. Le
point M est une donnée aberrante puisqgue son epsilon voisinage ne
contient pas MinFPts points ou plus.

fow|

eps
distance entre
2 points

DBSCAN

min_samples
nombre min de point
dans un groupe

Epsilon

Evaluation Epsilon

20000

40000
Nbr clusters

G000

BO000

Estimation des parameétres [modifier | modifier le code |

L'estimation des paramétres e et MinPts n'est pas un probléme facile, car ces deux valeurs sont intrinséguement
liges A la topologie de l'espace a partitionner. Une trop faible valeur de e et/ou une trop grande valeur de MinPts
peuvent empécher I'algorithme de propager les clusters. A l'inverse, une trop grande valeur pour € etfou une trop faible
valeur pour MinPts peuvent conduire 'algorithme a ne renvoyer gue du bruit. Une heuristique ’ permettant de
déterminer conjointement € et MinPts pour un certain espace pourrait étre donnée par :

e ¢ calculer pour chague point de l'espace la distance & son plus proche voisin. Prendre e tel qu'une part
« suffisamment grande » des points aient une distance a son plus proche voisin inférieure 3 e;

e MinPts - calculer pour chague point le nombre de ses voising dans un rayon de taille € (12 taille de son €-
voisinage). Prendre MinPts tel qu'une part « sufisamment grande » des points aient plus de MinPts points
dans leur e-voisinage.

Par « suffisamment grand » on entend, par exemple, 95% ou 90% des points.

Une autre heuristigue pour les cas en 2D (définie dans l'article originale de DBSCAN1} consiste a fixer la valeur de
MinPts 2 4, et atracer |a courbe (triée dans l'ordre décroissant) des distances de chaque point a leur 48me plus
proche voisin. On fixe alors € a la valeur du "point seuil” reperé sur le graphe. Si ce seuil n'est pas clairement
identifiable, I'utilisateur peut le fixer en estimant le pourcentage de bruit dans le jeu de données : € est donc tel que
seuls les termes de bruit ont une distance & leur 46M€ plus proche voisin plus grande que €.

/. DBSCAN

Estimation des parametres : pour DBSCAN, les paramétres € et minPts sont nécessaires.

 minPts : En regle générale, un minimum minPts peut étre déerivé du nombre de dimensions D dans I'ensemble de
donnees, comme minPts 2 D + 1. La faible valeur minPts = 1 n'a pas de sens, car alors chaque point a lui seul sera
déja un cluster. Avec minPts < 2, le résultat sera le méme que celui du clustering hiérarchique avec la métrique du
lien unique, avec le dendrogramme coupé a la hauteur €. Par conséquent, minPts doit étre choisi au moins 3.
Cependant, des valeurs plus grandes sont généralement meilleures pour les ensembles de données avec du bruit
et donneront des clusters plus significatifs. En regle générale, minPts = 2-dim peut étre utilisé, mais il peut étre
nécessaire de choisir des valeurs plus grandes pour les donneées tres grandes, pour les données bruyantes ou pour
les données qui contiennent de nombreux doublons.

« ¢€:Lavaleur de € peut alors étre choisie en utilisant un graphique de k-distance, en tracant la distance au voisin le
plus proche k = minPts-1 ordonnée de la plus grande a la plus petite valeur. Les bonnes valeurs de € sont celles ou
ce graphique montre un "coude" : si € est choisi beaucoup trop petit, une grande partie des données ne seront pas
regroupees ; alors que pour une valeur trop élevée de ¢, les clusters fusionneront et la majorité des objets seront
dans le méme cluster. En général, les petites valeurs de € sont préférables, et en regle générale, seule une petite
fraction des points doit se trouver a cette distance les uns des autres.

 Fonction de distance : Le choix de la fonction de distance est étroitement lié au choix de €, et a un impact majeur
sur les résultats. En général, il faudra d'abord identifier une mesure raisonnable de la similarité pour I'ensemble des
données, avant de pouvoir choisir le parametre €. Il n'y a pas d'estimation pour ce parameétre, mais les fonctions de
distance doivent étre choisies de maniere appropriée pour I'ensemble des données.

DESCAN - Principe - Algorithme :

v, Epsilon Voisinage :

{' => Pour chaque point d’'un
: cluster, on doit pouvoir trouver
' n-voisins a une distance

epsilon du point observé

i

730

DBSCAM(D, eps, MinPts)
C=28
pour chaque point P non visité
des données D
marquer P comme visité
PtsVoisins =
epsilonVoisinage(D, P, eps)
si tailleDe(PtsVoisins) <
MinPts
marquer P comme BRUIT
sinon
C++
etendreCluster(D, P,
PtsVoisins, C, eps, MinPts)

etendreCluster(D, P, PtsVoisins, C,
eps, MinPts)
ajouter P au cluster C
pour chaque point P' de
PtsVoisins
si P" n'a pas été visité
marquer P' comme visité
PtsVoisins' =
epsilonVoisinage(D, P', eps)
si tailleDe(PtsVoisins') »=
MinPts
PtsWoisins = PtsVoisins
U PtsVoisins®
=i P’ n'est membre d'aucun
cluster
ajouter P' au cluster C

epsilonVoisinage(D, P, eps)

retourner tous les points de D
gui sont 3 une distance inférieure 3
epsilon de P

Avantages :

- L'algorithme est tres simple et ne nécessite pas qu'on lui précise le nombre de clusters a trouver.
- Il est capable de gérer les données aberrantes en les éliminant du processus de partitionnement.

Les clusters n'ont pas pour obligation d'étre linéairement séparables (tout comme pour l'algorithme des k-
moyennes par exemple).

Inconvénients :

Cependant, il n'est pas capable de gérer des clusters de densités differentes.

Difficile a paramétrer (eps et minPts fortement liés et menent souvent a 1 seul cluster).

difficile a utiliser en tres grande dimension : souvenez-vous du fléau de la dimensionalité.

Les boules de rayon epsilon et de grande dimension ont tendance a ne contenir aucun autre point.

efficace en temps de calcul sans requérir de prédéfinir le nombre de clusters

permet de trouver des clusters de forme arbitraire.

Il ne fonctionne pas aussi bien que d’autres lorsque les clusters ont une densité variable (le réglage du seuil de
distance € et de minPoints pour l'identification des points de voisinage varie d'un cluster a I'autre lorsque la
densité varie)

Il n’est pas performant avec des données de trés haute dimension car le seuil de distance € devient difficile a
estimer.

https://fr.wikipedia.org/wiki/Algorithme_des_k-moyennes
https://openclassrooms.com/courses/explorez-vos-donnees-avec-des-algorithmes-non-supervises/comprenez-pourquoi-reduire-la-dimension-de-vos-donnees#/id/r-4446149

