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5. Modèles – Boosting - AdaBoost

AdaBoost :
Le boosting adaptatif met à jour les poids attachés à chacune des observations de l'ensemble de données 
d'apprentissage.
Le modèle d'ensemble est défini comme une somme pondérée de L apprenants faibles  (stumps c’est à dire des arbres 
qui ne font qu’une seule séparation, avec un seul noeud ) construits séquentiellement et une agrégation en une simple 
combinaison linéaire pondérée par des coefficients exprimant la performance de chaque apprenant.
Optimisation globale difficile  optimisation itérative locale en ajoutant les apprenants faibles un par un, en 
recherchant à chaque itération la meilleure paire possible (coefficient, apprenant faible) à ajouter au modèle 
d'ensemble actuel

L itération :
 ajuster le meilleur modèle faible possible avec les poids des observations courantes
 calculer la valeur du coefficient de mise à jour qui est une sorte de métrique d'évaluation 

scalaire de l'apprenant faible qui indique dans quelle mesure cet apprenant faible doit 
être pris en compte dans le modèle d'ensemble

 mettre à jour l'apprenant fort en ajoutant le nouvel apprenant faible multiplié par son 
coefficient de mise à jour

 calculer les nouveaux poids des observations qui expriment les observations sur 
lesquelles nous souhaitons nous concentrer à la prochaine itération (les poids des 
observations mal prédites par le modèle agrégé augmentent et les poids des 
observations correctement prédites diminuent).



5. Modèles – Boosting - AdaBoost
Algorithme :
• Au départ, toutes les observations ont le même poids.
• Un modèle est construit sur un sous-ensemble de données.
• En utilisant ce modèle, des prédictions sont faites sur l'ensemble des données.
• Les erreurs sont calculées en comparant les prédictions et les valeurs réelles.
• Lors de la création du modèle suivant, des poids plus élevés sont attribués aux points de données qui ont été prédits de manière incorrecte.
• Les pondérations peuvent être déterminées en utilisant la valeur de l'erreur. Par exemple, plus l'erreur est élevée, plus le poids attribué à 

l'observation est important.
Ce processus est répété jusqu'à ce que la fonction d'erreur ne change pas, ou que la limite maximale du nombre d'estimateurs soit atteinte.

Hyperparamètres :

base_estimators : spécifie le type d'estimateur de base, c'est-à-dire l'algorithme à utiliser comme apprenant de base.

n_estimators : Il définit le nombre d'estimateurs de base, la valeur par défaut est 10 mais vous pouvez l'augmenter afin d'obtenir une meilleure performance.

learning_rate : même impact que dans l'algorithme de descente de gradient. Ce paramètre contrôle la contribution des estimateurs dans la combinaison finale. Il existe un 
compromis entre le taux d'apprentissage et les n_estimateurs.

max_depth : profondeur maximale de l'estimateur individuel. Réglez ce paramètre pour obtenir les meilleures performances.

n_jobs : indique au système le nombre de processeurs qu'il est autorisé à utiliser. La valeur '-1' signifie qu'il n'y a pas de limite 

random_state : rend la sortie du modèle reproductible. Il produira toujours les mêmes résultats si vous lui donnez une valeur fixe ainsi que les mêmes paramètres et 
données d'entraînement.


