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5. Modeles — Boosting - AdaBoost g
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AdaBoost :

Le boosting adaptatif met a jour les poids attachés a chacune des observations de I'ensemble de données
d'apprentissage.

Le modele d'ensemble est défini comme une somme pondérée de L apprenants faibles (stumps c’est a dire des arbres
qui ne font qu’une seule séparation, avec un seul noeud ) construits séquentiellement et une agrégation en une simple
combinaison linéaire pondérée par des coefficients exprimant la performance de chaque apprenant.

Optimisation globale difficile =» optimisation itérative locale en ajoutant les apprenants faibles un par un, en
recherchant a chaque itération la meilleure paire possible (coefficient, apprenant faible) a ajouter au modéle
d'ensemble actuel
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ol E(.) est I'erreur d'ajustement du modéle donné et g(.,.) est la fonction de perte/erreur.
L itération :
e  ajuster le meilleur modéle faible possible avec les poids des observations courantes
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. calculer la valeur du coefficient de mise & jour qui est une sorte de métrique d'évaluation 5= <*%

scalaire de I'apprenant faible qui indique dans quelle mesure cet apprenant faible doit
étre pris en compte dans le modéle d'ensemble

. mettre a jour I'apprenant fort en ajoutant le nouvel apprenant faible multiplié par son
coefficient de mise a jour

e calculer les nouveaux poids des observations qui expriment les observations sur
lesquelles nous souhaitons nous concentrer a la prochaine itération (les poids des
observations mal prédites par le modéle agrégé augmentent et les poids des
observations correctement prédites diminuent).
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Algorithme :

* Au départ, toutes les observations ont le méme poids.

* Un modéle est construit sur un sous-ensemble de données.

» En utilisant ce modéle, des prédictions sont faites sur I'ensemble des données.

* Les erreurs sont calculées en comparant les prédictions et les valeurs réelles.

* Lors de la création du modéle suivant, des poids plus élevés sont attribués aux points de données qui ont été prédits de maniére incorrecte.

* Les pondérations peuvent étre déterminées en utilisant la valeur de I'erreur. Par exemple, plus I'erreur est élevée, plus le poids attribué a
I'observation est important.

Ce processus est répété jusqu'a ce que la fonction d'erreur ne change pas, ou que la limite maximale du nombre d'estimateurs soit atteinte.

Hyperparameétres :

base_estimators : spécifie le type d'estimateur de base, c'est-a-dire I'algorithme a utiliser comme apprenant de base.
n_estimators : Il définit le nombre d'estimateurs de base, la valeur par défaut est 10 mais vous pouvez I'augmenter afin d'obtenir une meilleure performance.

learning_rate : méme impact que dans l'algorithme de descente de gradient. Ce paramétre contrdle la contribution des estimateurs dans la combinaison finale. Il existe un
compromis entre le taux d'apprentissage et les n_estimateurs.

max_depth : profondeur maximale de I'estimateur individuel. Réglez ce paramétre pour obtenir les meilleures performances.
n_jobs : indique au systéme le nombre de processeurs qu'il est autorisé a utiliser. La valeur -1' signifie qu'il n'y a pas de limite

random_state : rend la sortie du modele reproductible. Il produira toujours les mémes résultats si vous lui donnez une valeur fixe ainsi que les mémes parameétres et
données d'entrainement.




