5 Modeles
AdaBoost

5. Modeles — Boosting - AdaBoost g
> il

AdaBoost :

Le boosting adaptatif met a jour les poids attachés a chacune des observations de I'ensemble de données
d'apprentissage.

Le modele d'ensemble est défini comme une somme pondérée de L apprenants faibles (stumps c’est a dire des arbres
qui ne font qu’une seule séparation, avec un seul noeud) construits séquentiellement et une agrégation en une simple
combinaison linéaire pondérée par des coefficients exprimant la performance de chaque apprenant.

Optimisation globale difficile =» optimisation itérative locale en ajoutant les apprenants faibles un par un, en
recherchant a chaque itération la meilleure paire possible (coefficient, apprenant faible) a ajouter au modéle
d'ensemble actuel

(er,wy(.)) = argminE(s;—1(.) + ¢ x w(.)) = arg min Z e(UYn, Si-1(zn) + ¢ X w(zx,))

N train a weak model
£ and aggregate it to
the ensemble model

update the weights of
LS. observations misclassified by
the current ensemble model

current ensemble model
predicts “orange” class

current ensemble model
predicts “blue” class

c,w(.)

ean(.)

n=1

ol E(.) est I'erreur d'ajustement du modéle donné et g(.,.) est la fonction de perte/erreur.
L itération :
e ajuster le meilleur modéle faible possible avec les poids des observations courantes

sl ;
seking:

all Hoe
observakions
ave the

. calculer la valeur du coefficient de mise & jour qui est une sorte de métrique d'évaluation 5= <*%

scalaire de I'apprenant faible qui indique dans quelle mesure cet apprenant faible doit
étre pris en compte dans le modéle d'ensemble

. mettre a jour I'apprenant fort en ajoutant le nouvel apprenant faible multiplié par son
coefficient de mise a jour

e calculer les nouveaux poids des observations qui expriment les observations sur
lesquelles nous souhaitons nous concentrer a la prochaine itération (les poids des
observations mal prédites par le modéle agrégé augmentent et les poids des
observations correctement prédites diminuent).

Q

Q@

%
%o

Algorithme :

* Au départ, toutes les observations ont le méme poids.

* Un modéle est construit sur un sous-ensemble de données.

» En utilisant ce modéle, des prédictions sont faites sur I'ensemble des données.

* Les erreurs sont calculées en comparant les prédictions et les valeurs réelles.

* Lors de la création du modéle suivant, des poids plus élevés sont attribués aux points de données qui ont été prédits de maniére incorrecte.

* Les pondérations peuvent étre déterminées en utilisant la valeur de I'erreur. Par exemple, plus I'erreur est élevée, plus le poids attribué a
I'observation est important.

Ce processus est répété jusqu'a ce que la fonction d'erreur ne change pas, ou que la limite maximale du nombre d'estimateurs soit atteinte.

Hyperparameétres :

base_estimators : spécifie le type d'estimateur de base, c'est-a-dire I'algorithme a utiliser comme apprenant de base.
n_estimators : Il définit le nombre d'estimateurs de base, la valeur par défaut est 10 mais vous pouvez I'augmenter afin d'obtenir une meilleure performance.

learning_rate : méme impact que dans l'algorithme de descente de gradient. Ce paramétre contrdle la contribution des estimateurs dans la combinaison finale. Il existe un
compromis entre le taux d'apprentissage et les n_estimateurs.

max_depth : profondeur maximale de I'estimateur individuel. Réglez ce paramétre pour obtenir les meilleures performances.
n_jobs : indique au systéme le nombre de processeurs qu'il est autorisé a utiliser. La valeur -1' signifie qu'il n'y a pas de limite

random_state : rend la sortie du modele reproductible. Il produira toujours les mémes résultats si vous lui donnez une valeur fixe ainsi que les mémes parameétres et
données d'entrainement.

