

5

Modèles Boosting Comparaison

5. Modèles – Boosting - Comparaison

Function	XGBoost	CatBoost	Light GBM
Important parameters which control overfitting	<ol style="list-style-type: none"> learning_rate or eta – optimal values lie between 0.01-0.2 max_depth min_child_weight: similar to min_child_leaf; default is 1 	<ol style="list-style-type: none"> Learning_rate Depth - value can be any integer up to 16. Recommended - [1 to 10] No such feature like min_child_weight l2-leaf-reg: L2 regularization coefficient. Used for leaf value calculation (any positive integer allowed) 	<ol style="list-style-type: none"> learning_rate max_depth: default is 20. Important to note that tree still grows leaf-wise. Hence it is important to tune num_leaves (number of leaves in a tree) which should be smaller than $2^{\max(\text{depth})}$. It is a very important parameter for LGBM min_data_in_leaf: default=20, alias= min_data, min_child_samples
Parameters for categorical values	Not Available	<ol style="list-style-type: none"> cat_features: It denotes the index of categorical features one_hot_max_size: Use one-hot encoding for all features with number of different values less than or equal to the given parameter value (max – 255) 	<ol style="list-style-type: none"> categorical_feature: specify the categorical features we want to use for training our model
Parameters for controlling speed	<ol style="list-style-type: none"> colsample_bytree: subsample ratio of columns subsample: subsample ratio of the training instance n_estimators: maximum number of decision trees; high value can lead to overfitting 	<ol style="list-style-type: none"> rsm: Random subspace method. The percentage of features to use at each split selection No such parameter to subset data iterations: maximum number of trees that can be built; high value can lead to overfitting 	<ol style="list-style-type: none"> feature_fraction: fraction of features to be taken for each iteration bagging_fraction: data to be used for each iteration and is generally used to speed up the training and avoid overfitting num_iterations: number of boosting iterations to be performed; default=100