: Modeles
XGBoost

5. Modeles — Boosting — XGBoost 5
)

Extreme Gradient Boosting (2014) est une implémentation avancée du Gradient Boosting.

XGBoost est un algorithme d'arbre de décision boosté par le gradient. |l existe depuis 2014 et a fini par dominer
Kaggle et la communauté des sciences des données. XGB a introduit le boosting par gradient, ou de nouveaux
modéles sont adaptés aux résidus des modeles précédents, puis ajoutés ensemble, en utilisant un algorithme de
descente de gradient pour minimiser la perte.

Parameétres généraux : lls définissent la fonctionnalité globale de Paramétres de la tache d'apprentissage : ces parameétres sont utilisés
XGBoost. pour définir I'objectif d'optimisation et la métrique a calculer a chaque étape.
booster [default=gbtree] Sélectionnez le type de modéle a exécuter a objectif [default=reg:linear] : Ceci définit la fonction de perte a minimiser. Les
chaque itération. Il y a 2 options : gbtree : modéles basés sur des arbres valeurs les plus utilisées sont :

gblinear : modéles linéaires binary:logistic -régression logistique pour la classification binaire, renvoie la

probabilité prédite (et non la classe).
silent [default=0] : Le mode silencieux est activé est fixé a 1, c'est-a-dire multi:softmax -classification multiclasse utilisant I'objectif softmax, renvoie la
qu'aucun message d'exécution ne sera imprimé. Il est généralement bon classe prédite (pas les probabilités)

de garder la valeur 0 car les messages peuvent aider a comprendre le Vous devez également définir un paramétre supplémentaire num_class
modele. (nombre de classes) définissant le nombre de classes uniques.

nthread [par défaut, le nombre maximum de threads disponibles si non
défini]. Ceci est utilisé pour le traitement paralléle et le nombre de cceurs
dans le systeme doit étre entré.Si vous souhaitez exécuter sur tous les
ceeurs, la valeur ne doit pas étre saisie et I'algorithme le détectera
automatiquement.

Parameétres du Booster :

eta [default=0.3] / Analogue au taux d'apprentissage dans GBM Rend le modéle plus robuste en réduisant les poids a chaque étape. Valeurs finales typiques a utiliser : 0.01-0.2

min_child_weight [default=1]/ Définit la somme minimale des poids de toutes les observations requises dans un enfant.

Ceci est similaire a min_child_leaf dans GBM mais pas exactement. Cela fait référence a la "somme des poids" minimale des observations alors que GBM a un "nombre d'observations" minimal.
Utilisé pour contrbler l'over-fitting. Des valeurs plus élevées empéchent un modeéle d'apprendre des relations qui pourraient étre tres spécifiques a I'échantillon particulier sélectionné pour un arbre.
Des valeurs trop élevées peuvent conduire a un sous-ajustement et doivent donc étre réglées a I'aide de CV.

max_depth [default=6])/ La profondeur maximale d'un arbre, comme GBM. Utilisé pour contréler I'excés d'ajustement car une profondeur plus élevée permettra au modéle d'apprendre des relations trés spécifiques a un échantillon
particulier.
Doit étre réglé a I'aide de CV. Valeurs typiques : 3-10

max_leaf_nodes : Le nombre maximum de nceuds terminaux ou de feuilles dans un arbre. Peut étre défini a la place de max_depth. Comme les arbres binaires sont créés, une profondeur de 'n' produirait un maximum de 2”n feuilles.
Si cette valeur est définie, GBM ignorera max_depth.

gamma [default=0] : Un nceud est divisé uniquement lorsque la division qui en résulte donne une réduction positive de la fonction de perte. Gamma spécifie la réduction minimale des pertes requise pour effectuer un fractionnement.
Rend I'algorithme conservateur. Les valeurs peuvent varier en fonction de la fonction de perte et doivent étre ajustées.

max_delta_step [default=0] : Le pas delta maximum que nous autorisons pour I'estimation du poids de chaque arbre. Si la valeur est fixée a 0, cela signifie qu'il n'y a pas de contrainte. S'il est défini a une valeur positive, cela peut
aider a rendre I'étape de mise a jour plus conservatrice.

Habituellement, ce paramétre n'est pas nécessaire, mais il peut étre utile dans la régression logistique lorsque la classe est extrémement déséquilibrée.

Il n'est généralement pas utilisé mais vous pouvez I'explorer davantage si vous le souhaitez.

subsample [default=1] : Identique au sous-échantillon de GBM. Dénote la fraction d'observations a échantillonner de maniére aléatoire pour chaque arbre.
Des valeurs faibles rendent I'algorithme plus conservateur et empéchent I'ajustement excessif, mais des valeurs trop faibles peuvent conduire a un ajustement insuffisant.
Valeurs typiques : 0.5-1

colsample_bytree [default=1] (en anglais) : Similaire & max_features dans GBM. Indique la fraction de colonnes a échantillonner de maniéere aléatoire pour chaque arbre.
Valeurs typiques : 0.5-1

colsample_bylevel [default=1] : Indique le rapport de sous-échantillonnage des colonnes pour chaque division, dans chaque niveau.
Je ne I'utilise pas souvent car subsample et colsample_bytree feront le travail pour vous. Mais vous pouvez explorer davantage si vous le souhaitez.

lambda [default=1] : Terme de régularisation L2 sur les poids (analogue a la régression Ridge)
Ceci est utilisé pour gérer la partie régularisation de XGBoost. Bien que de nombreux data scientists ne I'utilisent pas souvent, il devrait étre exploré pour réduire I'overfitting.

alpha [default=0] : Terme de régularisation L1 sur le poids (analogue a la régression Lasso)
Peut étre utilisé en cas de dimensionnalité tres élevée afin que I'algorithme s'exécute plus rapidement lorsqu'il est mis en ceuvre.

scale_pos_weight [par défaut=1] : Une valeur supérieure a 0 devrait étre utilisée en cas de fort déséquilibre des classes, car elle permet une convergence plus rapide.

5. Modeles — Boosting — XGBoost

Avantages (%GBM) :

Régularisation : L'implémentation GBM standard n'a pas de régularisation comme XGBoost, ce qui permet de réduire l'overfitting. En fait, XGBoost est également connu
comme une technique de "boosting régularisé".

Traitement paralléle : XGBoost met en ceuvre un traitement paralléle et est incroyablement plus rapide que GBM.

Mais attendez, nous savons que le boosting est un processus séquentiel, alors comment peut-il &tre parallélisé ? Nous savons que chaque arbre ne peut étre construit
qu'apres le précédent, alors qu'est-ce qui nous empéche de faire un arbre en utilisant tous les coeurs ? J'espére que vous comprenez ou je veux en venir. Consultez ce lien
pour aller plus loin.

XGBoost supporte également I'implémentation sur Hadoop.

Grande flexibilité : XGBoost permet aux utilisateurs de définir des objectifs d'optimisation et des critéres d'évaluation personnalisés. Cela ajoute une toute nouvelle
dimension au modéle et il n'y a aucune limite a ce que nous pouvons faire.

Traitement des valeurs manquantes : XGBoost dispose d'une routine intégrée pour gérer les valeurs manquantes. L'utilisateur doit fournir une valeur différente des autres
observations et la passer comme parameétre. XGBoost essaie différentes choses lorsqu'il rencontre une valeur manquante sur chaque nceud et apprend quel chemin
prendre pour les valeurs manquantes a l'avenir.

Elagage de I'arbre : Un GBM arréte de diviser un noeud lorsqu'il rencontre une perte négative dans la division. Il s'agit donc plutét d'un algorithme avide. XGBoost, quant
a lui, effectue des scissions jusqu'a la profondeur maximale spécifiée, puis commence a élaguer l'arbre en arriére et supprime les scissions au-dela desquelles il n'y a
pas de gain positif. Un autre avantage est que parfois, une division de perte négative, par exemple -2, peut étre suivie d'une division de perte positive +10. GBM
s'arrétera lorsqu'il rencontrera -2. Mais XGBoost ira plus loin et verra un effet combiné de +8 de la division et gardera les deux.

Validation croisée intégrée : XGBoost permet a I'utilisateur d'exécuter une validation croisée a chaque itération du processus de boosting et il est donc facile d'obtenir le
nombre optimal exact d'itérations de boosting en une seule exécution. Contrairement a GBM, ou nous devons effectuer une recherche sur grille et ou seules quelques
valeurs peuvent étre testées.

Continuer sur le modéle existant : L'utilisateur peut commencer a former un modéle XGBoost a partir de la derniére itération de I'exécution précédente. Cela peut étre un
avantage significatif dans certaines applications spécifiques. L'implémentation GBM de sklearn posséde également cette fonctionnalité, ils sont donc a égalité sur ce
point.

Ancien : documentation et beaucoup d’exemples

